On the left invariant Randers and Matsumoto metrics of Berwald type on 3-dimensional Lie groups
نویسندگان
چکیده
منابع مشابه
Homogeneous Geodesics of Left Invariant Randers Metrics on a Three-Dimensional Lie Group
In this paper we study homogeneous geodesics in a three-dimensional connected Lie group G equipped with a left invariant Randers metric and investigates the set of all homogeneous geodesics. We show that there is a three-dimensional unimodular Lie group with a left invariant non-Berwaldian Randers metric which admits exactly one homogeneous geodesic through the identity element. Mathematics Sub...
متن کاملA remark on left invariant metrics on compact Lie groups
The investigation of manifolds with non-negative sectional curvature is one of the classical fields of study in global Riemannian geometry. While there are few known obstruction for a closed manifold to admit metrics of non-negative sectional curvature, there are relatively few known examples and general construction methods of such manifolds (see [Z] for a detailed survey). In this context, it...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولLeft Invariant Contact Structures on Lie Groups
A result from Gromov ensures the existence of a contact structure on any connected non-compact odd dimensional Lie group. But in general such structures are not invariant under left translations. The problem of finding which Lie groups admit a left invariant contact structure (contact Lie groups), is then still wide open. We perform a ‘contactization’ method to construct, in every odd dimension...
متن کاملInvariant Metrics with Nonnegative Curvature on Compact Lie Groups
We classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and U(2).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monatshefte für Mathematik
سال: 2015
ISSN: 0026-9255,1436-5081
DOI: 10.1007/s00605-015-0782-z